Abstract

Submarine landslides transport thousands of cubic meters of sediment across continental shelves even at slopes as low as 1{\deg} and can cause significant casualty and damage to infrastructure. The run-out mechanism in a submarine landslide is affected by factors such as the initial packing density, permeability, slope angle, and initial volume. While past studies have focused on the influence of density, permeability, and slope angle on the granular column collapse, the impact of volume on the run-out characteristics has not been investigated. This study aims to understand how the initial volume affects the run-out using a two-dimensional coupled lattice Boltzman and discrete element (LBM-DEM) method. The coupled LBM-DEM approach allows simulating fluid flow at the pore-scale resolution to understand the grain-scale mechanisms driving the complex continuum-scale response in the granular column collapse. For submerged granular column collapse, the run-out mechanism is heavily influenced by the interaction between the grains and the surrounding fluid. The development of negative pore pressures during shearing and hydrodynamic drag forces inhibit the flow. On the other hand, entrainment of water resulting in hydroplaning enhances the flow. With an increase in volume, the interaction between the grains and the surrounding fluid varies, causing changes in the run-out behavior. For smaller volumes, the forces inhibiting the underwater flow predominates, resulting in shorter run-outs than their dry counterparts. At large volumes, hydroplaning results in larger run-out than the dry cases, despite the inhibiting effects of drag forces and negative pore pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.