Abstract

The effect of initial tension on mechanics of adhered graphene blisters is investigated by extending Hencky’s solution to cases with an initial tension. The system parameters including maximum blister deflection, pressure difference across the membrane, and critical delamination pressure under various initial tensions are modeled and calculated. The dependences of critical pressure on the radius and depth of etched microcavity are also demonstrated and compared with the previous work which does not consider the initial tension. The results show that the added adhesion energy between monolayer graphene membrane and SiO2 substrate can reach 0.0954 J/m2 with a reported maximum initial tension of 2.4 N/m taken into account, which accounts for 21.2 % of the measured average value 0.45 J/m2. Thus, the initial tension should be considered in further adhesion energy measurements of graphene/substrate interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.