Abstract

The effect of initial take-up speed on the properties and structure of both as-spun and drawn/heat-set poly(ethylene terephthalate) filaments was characterized through measurements of birefringence, percent crystallinity, tensile properties, high temperature shrinkage, loss tangent temperature dependence, DSC melting behavior, and wide-angle (WAXS) and small-angle X-ray scattering (SAXS). While a steady trend toward improved as-spun filament orientation and tensile properties occurred with increasing initial take-up speed, the reduced drawability of these more structured precursor filaments resulted in corresponding drawn/heat-set filaments that were of relatively lower overall orientation and tensile strength. The observed trends in tenacity, initial modulus, and high temperature shrinkage of the drawn/heat-set filaments appeared to be well correlated with the extent and distribution of amorphous phase rigidity as perceived through inferences made from the loss tangent temperature dependence. The WAXS patterns of the drawn/heat-set samples indicated that these filaments all possess a well-developed and highly oriented crystalline structure. Application of a simple two phase model allowed the determination of an amorphous orientation factor, which for the drawn/heat-set filaments was generally found to decrease as the draw ratio imposed in order to achieve comparable levels of elongation to break decreased. The SAXS patterns of the drawn/heat-set filaments indicated that comparable long period spacings exist in all cases and that a transition from a four-point pattern to a two-point bar-shaped pattern occurred when the precursor filament possessed some significant amount of as-spun crystallinity. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2115–2131, 1998

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call