Abstract

Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal. A different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.