Abstract
In this study, the flame propagation characteristics of premixed natural gas–hydrogen–air mixtures were studied in constant volume combustion bomb by using the high-speed schlieren photography system. The flame radius, laminar flame propagation speed and the flame stretch rate were obtained under different initial pressure, temperature, equivalence ratios and hydrogen fractions. Meanwhile, the flame stability and their influencing factors were obtained by analyzing the Markstein length and the flame propagation schlieren photos under various combustion conditions. The results show that the stretched laminar propagation speed increases with the increase of the initial temperature and hydrogen fraction of the mixture, and will decreases with the increase of the initial pressure. Meanwhile, according to the Markstein length and the flame propagation pictures, the flame stability decreases with the increase of the temperature and hydrogen fraction, and the slight flaws occurred at the early stage; at larger flame radius, the flame stability is more sensitive to the variation of the initial temperature and hydrogen fraction than to that of initial pressure and equivalence ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.