Abstract
The grain selection process in a Z-form selector for Ni-based single-crystal superalloy was simulated using a macro-scale ProCAST software (2013 version) coupled CAFE module combined with an experiment to investigate the grain selection procedure and mechanism with different grain positions and crystal orientation relationships. A non-stationary solidification process was found in the Z-form selector, and the liquid-solid (L-S) interface was tilted in the same direction as the selector channel during directional solidification. Given that the grain boundary was parallel to the Z-form selector, the overgrowth rate of the bi-crystal in the selector channel was very low. The initial position of the bi-crystal in the selector channel has a greater effect on the overgrowth rate than the effects of primary and secondary orientations. The grain selection was a result of the coupling of the competitive grain growth effect and geometrical restriction effect. Finally, the selection grain mechanism within the Z-form selector was discussed, coalescing the temperature field and the grain competition growth mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.