Abstract

Abstract An accurate quantitative description of interception is necessary to understand regional water circulation. The revised sparse Gash model (RSGM) is currently used to estimate interception loss. Previous studies have proven that changes in initial plant density, which are caused by thinning, affect the accuracy of RSGM; however, the direct effect of initial density on modeling accuracy remains poorly understood because few studies have collected field data of the same species with various initial densities under similar site conditions. Therefore, six Pinus tabuliformis Carr. plantations with various initial densities were assessed from May to October 2016 in northern China. In summary, RSGM performs better with higher initial densities, and it cannot be suitably applied for plantations with lower initial densities, with the relative error ranging from 18.38 to 53.03%. Sensitivity analysis indicated that the predicted interception is highest sensitive to canopy structure, irrespective of initial density. The influence of climate parameters on simulated results decreased, as initial density increased. These support the notion that amending the representation of the canopy structure in the model and improving the estimation methods for determining the evaporation rate in open canopies can improve accuracy, and that the use of RSGM must first involve the consideration of initial density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.