Abstract

The cold rolling behavior of solidified columnar crystals in a 19% Cr ferritic stainless steel has been investigated in order to clarify the effects of the initial orientation of each columnar grain and of the interaction with adjacent grain in a polycrystalline specimen. The specimen showed {001} texture before rolling and {001} texture after 70% rolling reduction. It was clearly shown that the rolled microstructure and the crystal rotation by rolling strongly depend on the initial orientation. The 70% rolled microstructure of (001)[100] oriented grains consisted of a large number of fine stringer deformation bands, whereas (001)[110] oriented grains showed a uniform and non-characteristic deformation structure. In the grains having intermediate orientations such as (001)[510]-[320], stringer deformation bands formed near grain boundaries. Both of the (001)[100] and (001)[110] oriented grains maintained their initial orientations even after 70% rolling reduction, while the (001)[510]-[320] oriented grains rotated toward (001)[110]. It was emphasized that the stability of (001)[100] orineted grains against rolling is contrast to the case of (001)[100] oriented bcc single crystals where the crystal rotation toward (001) occurs. This difference was discussed from a viewpoint of the interaction with adjacent grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.