Abstract
ABSTRACT Thermal buckling analysis of rectangular functionally graded plates with initial geometrical imperfections is presented in this article. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate are derived using the first-order shear deformation plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate, graded through the thickness, are described by a power function of the thickness variable. The plate is assumed to be under three types of thermal loading, namely: uniform temperature rise, nonlinear temperature rise through the thickness, and axial temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling temperature change of an imperfect functionally graded plate. The influence of transverse shear on thermal buckling load is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.