Abstract

203 Background: Poly-(ADP ribose) polymerases (PARPs) are DNA-binding proteins involved in DNA repair. PARP inhibition has resulted in excellent antitumor activity when used with other cytotoxic therapies. ABT-888 is a promising PARP inhibitor with excellent potency against the PARP-1/2 enzymes and good oral bioavailability. We attempt to determine whether PARP-1/2 inhibition alone, or in combination with gemcitabine, will enhance the effects of irradiation (RT) of pancreatic cancer cells. Methods: The pancreatic carcinoma cell lines, MiaPaCa-2 and Panc02, were treated with ABT-888, gemcitabine, RT, or combinations thereof. RT was delivered with a 137-Cs Gammacell in a single fraction. Cells were pre-treated once with ABT-888 and/or gemcitabine 30 minutes prior to RT. Viability was assessed through reduction of resazurin into fluorescent resorufin. Levels of apoptosis were determined by measuring caspase-3/7 activity using a luminescent assay. PARP activity was determined using a chemiluminescent PAR elisa. Results: The half maximal inhibitory concentration (IC50) of RT was 5 Gy; IC10 for ABT-888 and gemcitabine were 10 uM and 5 nM, respectively. Treatment with ABT-888 (10 uM), gemcitabine (5 nM), or combinations of the two with RT led to increasingly higher rates of cell death 8 days after treatment (p<0.001). RT dose enhancement factors were 1.5, 1.82 and 2.36 for 1, 10 and 100 uM ABT-888, respectively. Minimal cytotoxicity was noted when cells were treated with ABT-888 alone up to 100 uM. Caspase activity was not significantly increased when treated with ABT-888 (10 uM) alone (1.28 fold, p=0.077), but became significant when RT (2 Gy) was added (2.03 fold, p=0.006). This difference was further enhanced by the addition of gemcitabine (2.95 fold, p=0.004). Conclusions: ABT-888 is a potent radiosensitizer of pancreatic cancer cells with minimal cytotoxicity when used alone. Cell death is further potentiated by cotreatment with gemcitabine. Radiation-induced apoptosis was significantly enhanced by ABT-888 and gemcitabine, suggesting a synergistic mechanism of interference with DNA repair. These data are currently being validated in an orthotopic pancreatic cancer mouse model. No significant financial relationships to disclose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call