Abstract

The purpose of this study was to determine the effect of inhibition of nitric oxide (NO) release on the diaphragmatic microvascular responses to hypoxia. In alpha-chloralose-anesthetized mongrel dogs, the microcirculation of the vascularly isolated ex vivo left hemidiaphragm was studied by intravital microscopy. The diaphragm was pump perfused with blood diverted from the femoral artery through a series of membrane oxygenators. The responses to supramaximal concentrations of sodium nitroprusside, moderate hypoxia (phrenic venous PO2 27 Torr), and severe hypoxia (phrenic venous PO2 15 Torr) were recorded before and after an infusion of NG-nitro-L-arginine (L-NNA; 6 x 10(-4) M) into the phrenic circulation for 20 min. Under control conditions, diaphragmatic blood flow was 12.4 +/- 1.1 ml.min-1.100g-1. Diaphragmatic blood flows recorded during moderate and severe hypoxia were 15.6 +/- 1.2 and 24.3 +/- 1.5 ml.min-1. 100 g-1, respectively (P < 0.05 for both compared with control values). Treatment with L-NNA reduced diaphragmatic blood flow to 9.6 +/- 0.8 ml.min-1.100 g-1 under control conditions (P < 0.05) and caused arteriolar vasoconstriction to a degree that was dependent on vessel size (i.e., larger vessels constricted more than smaller vessels). L-NNA eliminated the increase in blood flow during moderate hypoxia and inhibited arteriolar dilation by an amount that was related to vessel size (i.e., dilation of larger vessels was inhibited more than that of smaller vessels). Inhibition of NO synthesis had no effect on the increase in diaphragmatic blood flow (23.6 +/- 1.9 ml.min-1.100 g-1; P > 0.05 compared with that during severe hypoxia before treatment with L-NNA) or arteriolar diameters during severe hypoxia. NO release plays a role in the diaphragmatic vascular response to hypoxia, but this role is limited to dilation of larger arterioles during hypoxia of moderate severity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.