Abstract

Previous studies have shown that the endosomal apparatus plays an important role in insulin signaling. Inhibition of endosomal acidification leads to a decrease in insulin-insulin receptor kinase (IRK) dissociation and insulin degradation. Thus, vacuolar pH could function as a modulator of insulin signaling in endosomes. In the present study we show that in primary hepatocytes pretreated with bafilomycin, there is an inhibition of vacuolar acidification. Incubation of these cells with insulin was followed by an augmentation of IRK activity but an inhibition of phosphatidylinositol 3-kinase/Akt activity and a decrease in insulin-induced DNA and glycogen synthesis. Bafilomycin treatment inhibited IRK recycling to the plasma membrane without affecting IRK internalization. Impaired IRK recycling correlated with a decrease in insulin signaling. We suggest that inhibiting vacuolar acidification sequesters activated IRKs in an intracellular compartment(s) where signaling is inhibited. This implies that endosomal receptor trafficking plays a role in regulating signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.