Abstract
Matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) are thought to play critical roles in cartilage degradation at the early phase of osteoarthritis (OA). The aim of this study is to examine the effect of chemically modified Mmp13 or Adamts5 small interfering RNA (siRNA), alone or in combination, in a mouse OA model. OA pathology was surgically induced in 9-week-old male C57/BL6 mice (n = 64) via destabilization of the medial meniscus (DMM). We used chemically modified siRNA (Accell siRNAs®) for Mmp13 and Adamts5, as well as a non-targeting control and evaluated their combined and individual effects after injection in the DMM model. The control group (n = 16) was injected with non-targeting siRNA and the normal group (n = 16) did not undergo any surgical induction or intra-articular injection. Histological assessment of the articular cartilage was conducted at 4 and 8weeks post-DMM surgery to evaluate OA progression. Significant improvement in the histological score was observed at 8weeks after DMM in all three siRNA-treated groups compared to the control siRNA-injected group. The score of the combined group was significantly lower than that of the Adamts5 siRNA-only group. No significant differences were noted between the Mmp13 siRNA-only group and the combined group. Combined intra-articular injection of Mmp13 and Adamts5 siRNA resulted in almost the same inhibitory effects as Mmp13 siRNA alone on cartilage degradation at the early phase of OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.