Abstract
It was recently shown that osmolality-dependent fluid movement is a significant factor causing the clinically observed apple juice (AJ)-atenolol interaction. Here we examined whether osmolality-dependent fluid movement may also explain the AJ volume dependence of the AJ-atenolol interaction. In Wistar rats, the luminal fluid volume after administration of different volumes of purified water (0.5 and 1.0 mL) gradually reduced to a similar steady-state level, while that after administration of different volumes of AJ (0.5 and 1.0 mL) increased and attained different apparent steady-state levels. It was hypothesized that osmolality-dependent fluid secretion would account for the volume dependence of the apparent steady-state. Indeed, the luminal concentration of FD-4, a non-permeable compound, after administration in AJ was attenuated depending upon the ingested volume, whereas that after administration in purified water was independent of the ingested fluid volume. An in vivo pharmacokinetic study in rats showed that co-administration of AJ and hyperosmotic solution (adjusted to the osmolality of AJ) with atenolol volume-dependently reduced the AUC and Cmax of atenolol significantly. These results show that osmolality-dependent variations in luminal fluid volume may indirectly influence the absorption characteristics of drugs, and can account for the observed volume dependence of beverage-drug interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.