Abstract
The maximum laminar burning velocity (LBV) of a fuel-air mixture is an important input parameter to vapor cloud explosion (VCE) blast load prediction methods. In particular, the LBV value has a significant impact on the predicted blast loads for high reactivity fuels with the propensity to undergo a deflagration-to-detonation transition (DDT). Published data are available for the maximum LBV of many pure fuel-air mixtures. However, little test data are available for mixtures of fuels, particularly for mixtures of fuels and inert species. Such mixtures are common in the petroleum refining and chemical processing industries. It is therefore of interest to be able to calculate the maximum LBV of a fuel/inert mixture based on the mixture composition and maximum LBV of each component.This paper presents measured test data for the maximum LBV of H2/inert and C2H4/inert mixtures, with both nitrogen and carbon dioxide as the inert species. The LBV values were determined using a constant-volume vessel and the pressure rise method. This paper also provides a comparison of the measured LBV values with simplified LBV prediction methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.