Abstract

Experiments were conducted in inert, reducing, and oxidizing atmospheres to determine their influence on the friction and wear properties of various metals. Nitrogen, argon, forming gas (10 volume percent H2, 90 volume percent N2), and various concentrations of oxygen in nitrogen were used. A 3/16-inch-radius hemispherical rider under a load of 1000 grams contacted the flat surface of a rotating disk. The surface speed employed was 35 feet per minute. The presence of surface oxides is vitally important to the protection of metals in sliding contact. Extremely high friction and excessive wear were encountered in the absence of these oxides. In some instances (electrolytically pure copper), the removal of the surface oxides resulted in mass welding of the specimens in sliding contact. Extremely small quantities of oxygen are sufficient to provide protection of metal surfaces; for example, with 440-C stainless steel, 0.03 volume percent oxygen was found to be adequate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.