Abstract
This study has employed the master chemical mechanism (MCM) to investigate the influence of the ozone oxidation pathways in the atmospheric formation of H2SO4 from short-chain olefins in industrialized areas. In-situ H2SO4 formation data were obtained using a high-resolution chemical ionization time-of-flight mass spectrometer, and the simulated H2SO4 concentrations calculated using updated parameters for the MCM model exhibited good agreement with observations. In the simulation analysis of different reaction pathways involved in H2SO4 formation, hydroxyl radicals were found to dominate H2SO4 production during the daytime, while olefin ozone oxidation contributed up to 65% of total H2SO4 production during the night-time. A sensitivity analysis of the H2SO4 production parameters has revealed a high sensitivity to changes in sulfur dioxide, and a relatively high sensitivity to olefins with fast ozonolysis reaction rates and bimolecular reaction rates of resulting stabilized Criegee Intermediates. A high relative humidity promotes daytime H2SO4 formation, but has an inhibiting effect during the night-time due to the different dominant reaction pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.