Abstract

This study investigates the impact of blade induction modelling on the accuracy of wind turbine rotor aeroelastic predictions. It extends the capabilities of AEOLIAN (AErOeLastic sImulAtioN), a Fluid Structure Interaction (FSI) solver based on Blade Element Momentum Theory (BEMT) coupled with a Lumped Mass approach to represent the blade structure. Herein, AEOLIAN’s analytical wake induction engineering model is replaced with the outcomes of a physically-consistent three-dimensional Free-Vortex Wake (FVW) formulation initially employed in AeroROTOR. This versatile aeroelastic simulation tool is implemented within the framework of MATLAB Simulink/Simscape-Multibody©, a modular environment suitable for industry analysts, researchers, and academic users focusing on wind turbine aero-servo-elastic applications. Furthermore, it serves to lay the groundwork for the development of advanced control laws for multi-megawatt rotors, fostering innovation in the design and optimization of the next-generation wind turbines. The presented analyses focus on predicting the aeroelastic behavior of the bottom-fixed NREL 5MW rotor in uniform axial flow over the operating range, complemented by more detailed investigations at the rated condition undergoing inflow with/without wind misalignment (yaw). The study on key performance parameters is conducted by comparing with the higher-fidelity data from available Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) coupled with CFD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.