Abstract
The purpose of the study was to examine the roles of active pyruvate dehydrogenase (PDH(a)), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism during incremental exercise after ingestion of 0.3 g/kg of either NaHCO(3) [metabolic alkalosis (ALK)] or CaCO(3) [control (CON)]. Subjects (n = 8) were studied at rest, rest postingestion, and during constant rate cycling at three stages (15 min each): 30, 60, 75% of maximal O(2) uptake (VO(2 max)). Radial artery and femoral venous blood samples, leg blood flow, and biopsies of the vastus lateralis were obtained during each power output. ALK resulted in significantly (P < 0.05) higher intramuscular Lac(-) concentration ([Lac(-)]; ALK 72.8 vs. CON 65.2 mmol/kg dry wt), arterial whole blood [Lac(-)] (ALK 8.7 vs. CON 7.0 mmol/l), and leg Lac(-) efflux (ALK 10.0 vs. CON 4.2 mmol/min) at 75% VO(2 max). The increased intramuscular [Lac(-)] resulted from increased pyruvate production due to stimulation of glycogenolysis at the level of Phos a and phosphofructokinase due to allosteric regulation mediated by increased free ADP (ADP(f)), free AMP (AMP(f)), and free P(i) concentrations. PDH(a) increased with ALK at 60% VO(2 max) but was similar to CON at 75% VO(2 max). The increased PDH(a) may have resulted from alterations in the acetyl-CoA, ADP(f), pyruvate, NADH, and H(+) concentrations leading to a lower relative activity of PDH kinase, whereas the similar values at 75% VO(2 max) may have reflected maximal activation. The results demonstrate that imposed metabolic alkalosis in skeletal muscle results in acceleration of glycogenolysis at the level of Phos relative to maximal PDH activation, resulting in a mismatch between the rates of pyruvate production and oxidation resulting in an increase in Lac(-) production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.