Abstract

The objective was to investigate the effects of supplementary zinc (Zn) during in vitro maturation (IVM) of bovine oocytes. The DNA damage in cumulus cells was low with supplemental Zn concentrations of 1.1 and 1.5 μg/mL in the IVM medium (mean ± SEM index of DNA damage was 67.52 ± 9.32, 68.52 ±13.34, 33.80 ± 4.89, and 34.65 ± 7.92 for supplementation with 0, 0.7, 1.1, and 1.5 μg/mL Zn, respectively; P < 0.01). Total glutathione concentrations did not differ following Zn supplementation of 1.1 and 1.5 μg/mL (3.7 ± 0.4 vs. 4.0 ± 0.5 pmol, respectively, in oocytes; and in cumulus cells, 0.5 ± 0.04 nmol/10 6 cells, combined for both treatments), but were greater (P < 0.01) than supplementation with 0.7 μg/mL (1.8 ± 0.5 pmol in oocytes and 0.2 ± 0.02 nmol/10 6 cumulus cells). Cleavage rate increased (P < 0.05) when Zn was added to the IVM medium at any concentration (67.16 ± 1.17, 73.15 ± 1.15, 74.05 ± 1.23, and 72.76 ± 0.74 for 0, 0.7, 1.1, and 1.5 μg/mL Zn). For these concentrations, subsequent embryo development to the blastocyst stage was 17.83 ± 2.15, 21.95 ± 0.95, 27.65 ± 1.61, and 30.33 ± 2.78%, highest (P < 0.01) in oocytes matured with 1.5 μg/mL Zn. There was an increase (P < 0.05) in mean cell number per blastocyst obtained from oocytes matured with 1.1 and 1.5 μg/mL Zn relative to 0 Zn (IVM alone) and 0.7 μg/mL Zn. In conclusion, Zn during oocytes maturation significantly affected intracellular GSH content and DNA integrity of cumulus cells, and improved preimplantational embryo development. We inferred that optimal embryo development to the blastocyst stage was partially dependent on the presence of adequate Zn concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.