Abstract

The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

Highlights

  • Food waste (FW), usually from residential, commercial establishments, institutional and industrial sources, is generated at an ever-increasing rate with the rapid population growth and rising living standards in China [1]

  • The results obtained by Duan et al, showed that high-solids system could reach much higher volumetric methane production rate compared with low-solids system at the same solid retention time (SRT) in mesophilic anaerobic reactors treating sewage sludge [3]

  • For each semi-continuously experiment with a good anaerobic digestion performance, there was no accumulation of volatile fatty acid (VFA) and low pH

Read more

Summary

Introduction

Food waste (FW), usually from residential, commercial establishments, institutional and industrial sources, is generated at an ever-increasing rate (higher than 10% every year) with the rapid population growth and rising living standards in China [1]. It seems to be a good idea to reuse this favorable feedstock for energy recovery and municipal solid waste (MSW) reduction because FW contains high moisture and biodegradable organics and accounts for 40–50% of the weight of MSW. Forster-Carneiro et al, showed that the biogas and methane production decreased with the total solids contents increasing from 20% to 30% in dry batch anaerobic digestion of food waste [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call