Abstract

In this study, Molecular Dynamics (MD) simulations are employed to observe the effect of different chain lengths on density, self-diffusion coefficient and viscosity of [Cnmim][TF2N] ionic liquids (ILs). Both density and self-diffusion coefficient decrease as the chain length increases. The rheological curves show a shear-thinning after Newtonian behavior. The results suggest that viscous thinning is related to the decrease in the number of hydrogen bonds (H-bonds) and the alignment of the alkyl chains in the flow direction. Viscosity values at zero-shear-rate increase as the chain size does. Moreover, the static structure factor indicates anisotropy in systems with cation alkyl chains of 6 and 8 carbon atoms. However, in a 10 carbon atom cation alkyl chain, a more ordering is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.