Abstract

We investigated the superconducting properties of Nb/Mo superlattices (SLs). The structural changes as a function of Nb and Mo layer thickness allow us to investigate the effect of disorder on the superconducting properties in a controlled fashion. Systematic structural studies provide quantitative measures of disorder parameters, such as roughness, interdiffusion, and strain, which allow separating their effect on the individual superconducting layers. The Mo critical temperature does not change as the layer thickness decreases below its coherence length. Thus, the SL critical temperatures in the presence of disorder and proximity effects can be modeled by considering only the effects of the Nb mean free path and coherence length. With increasing layer thickness, the SL critical temperatures approach Nb bulk values. Contrary to expectations the Tc of Mo remains below the Nb Tc. We discuss the results using existing theories based on Coulomb repulsion or changes in the density of states at the Fermi surface as a function of disorder. Questions about current understanding of the effect of disorder on superconductivity arise from the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call