Abstract

In order to study the dynamics of marine phytoplankton communities in response to anticipated in temperature and CO2, a shipboard continuous culture experiment (Ecostat) was conducted. The experiment involved simulations under current atmospheric CO2 concentrations (400 ppm) and projected year-2100 CO2 levels (1000 ppm), as well as varying temperature under present (22 °C) versus increased temperature (26 °C) in the Yellow Sea during the summer of 2020. The results showed that both the increased pCO2 and temperature had significant effects on microphytoplankton and picophytoplankton, with the warming effect proving to be more significant. The different responses of various species to acidification and warming and their coupling effect led to the changes in microphytoplankton and picophytoplankton community structure. Elevated temperature and greenhouse treatments promoted the growth of dominant diatoms and Synechococcus, such as Guinardia flaccida and Pseudo-nitzschia delicatissima. This phenomenons widened the ecological niche, and the changes in the growth patterns of dominant species consequently influenced the content of cellular elements. Mantel's analysis further demonstrated that both warming and greenhouse promoted the growth of diatoms and Synechococcus. Projections of marine phytoplankton community trends by the end of the century based on Growth Rate Ratio (GRR), indicated that not only would species with GRR < 1 decrease, but also numerous species with growth rates >1 at elevated pCO2 levels would be ousted from competition. This experiment demonstrates the need to investigate whether extended exposure to increased pCO2 and temperature over more extended time scales would similarly induce shifts in the biological and biogeochemical dynamics of the Yellow Sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.