Abstract
The hypothesis that the incorporation of halloysite nanotubes (HNTs) into low-density polyethylene (LDPE)/thermoplastic starch (TPS) blends could lead to materials with mechanical and flow properties close to those of pure LDPE but with improved potential biodegradability, was investigated. A 50 wt.%/50 wt.% LDPE/TPS blend was prepared via extrusion and injection molding, by using different HNT contents up to 8 wt.%. The obtained nanocomposite structure and properties was investigated. The SEM images and EDS analyses indicated that the HNTs were preferentially located within the starch-rich phases of the blend. Moreover, the addition of 8 wt.% HNTs to the LDPE/TPS blend promoted a pronounced enhancement in mechanical properties with respect to those of the original blend, leading to properties resembling those of pure LDPE. The results suggest that nanocomposites can be interesting candidates for the replacement of LDPE in applications in which the biodegradability of the proposed blend can reduce the environmental impact of traditional LDPE short-life products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.