Abstract
Statement of the Problem: Many efforts have been made to improve the properties of mineral trioxide aggregate (MTA), including the incorporation of nanoparticles. Purpose: The aim of this study was to investigate the incorporation of zinc oxide and hydroxyapatite nanoparticles on the compressive strength of white MTA (WMTA). Materials and Method: In this in vitro study, the following materials were evaluated: MTA, MTA+5% zinc oxide (ZnO) nanoparticles, MTA+10% zinc oxide nanoparticles, MTA+5% hydroxyapatite (HA) nanoparticles, MTA+10% zinc oxide nanoparticles. The compressive strength of the groups under investigation was measured on days 4 and 21 after mixing the MTA using a universal testing machine. Two-way ANOVA test was used to compare the groups and determine the significance of the effect of time and material on the compressive strength (p<0.05). Results: The highest and lowest compressive strength values were respectively measured for the second group, MTA/21 days, and the fourth group, MTA+Nano ZnO/4 days. Two-way ANOVA indicated that incorporation of zinc oxide and hydroxyapatite nanoparticles into MTA did not have a significant effect on compressive strength (p= 0.05). Compressive strength in all the groups increased over time from day 4 to day 21. However, this increase was not statistically significant (p= 0.06) except for the MTA group, which exhibited significant increase in compressive strength over time from day 4 to day 21 (p=0.007). Conclusion: Incorporation of HA and ZnO nanoparticles into MTA had no detrimental effects on its strength and these nanoparticles can be used to improve the other properties of MTA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.