Abstract
High-dielectric constant materials are critical for numerous applications such as photovoltaics, photonics, transistors, and capacitors. There are numerous polymers used as dielectric layers in these applications but can suffer from having a low dielectric constant, small band gap, or ferroelectricity. Here, the structure-property relationship of various poly(dimethyltin esters) is described that look to enhance the dipolar and atomic polarization component of the dielectric constant. These polymers are also modeled using first principles calculations based on density functional theory (DFT) to predict such values as the total, electronic, and ionic dielectric constant as well as structure. A strong correlation is achieved between the theoretical and experimental values with the polymers exhibiting dielectric constants >4.5 with dissipation on the order of 10(-3) -10(-2) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.