Abstract

The effect of inclusion on the strength and conductivity of fully discontinuous precipitated Cu-Ni-Si alloys with and without inclusion was studied. No inclusions were observed in Cu-4.75Ni-1.13Si alloy, the Ni + Si content of which was close to the solubility limit, while they were formed in solution-treated Cu-6Ni-1.42Si alloy at 980 °C. The duration of aging for full discontinuous precipitation (DP) at 500 °C was found to be shorter in Cu-6Ni-1.42Si alloy than Cu-4.75Ni-1.13Si alloy. The strength/conductivity of Cu-6%Ni-1.42%Si alloy with inclusion was 1071 MPa/46% IACS, while it was 966 MPa/50% IACS for Cu-4.75Ni-1.13Si alloy without inclusion, after drawing to the strain of 4. The drawing-induced uni-directional alignment of fiber-like Ni2Si precipitates was believed to increase the conductivity of Cu-Ni-Si alloys by reducing the cross sectional area of lamellar precipitates for the passage of electrons. The increase in strength was possibly due the higher volume fraction of fiber-like Ni2Si precipitates, along with the smaller inter-distance between them, in Cu-6%Ni-1.42%Si alloy with inclusion, than Cu-4.75Ni-1.13Si alloy without inclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.