Abstract

Saturation pool boiling experiments of FC-72 liquid on a flat, porous graphite and smooth copper surfaces measuring 10 × 10 mm investigated the effect of surface orientation on nucleate boiling and Critical Heat Flux (CHF). The inclination angle of the surface increased from 0° (upward-facing) to 60°, 90°, 120°, 150°, and 180° (downward facing). Results demonstrated significant increases in the nucleate boiling heat transfer coefficient and CHF on porous graphite, compared to those on copper. At low surface superheats, increasing the inclination angle increases the nucleate boiling heat transfer coefficient, which decreases with increased inclination angle at high surface superheats. These results and the measured decreases of CHF with increased inclination angle are consistent with those reported earlier by other investigators for dielectric and non-dielectric liquids. On smooth surfaces and micro-porous coatings, the reported fractional decreases in CHF with increased inclination angle are almost identical, but markedly larger than those measured in this work on porous graphite. On these surfaces the reported CHF in the downward-facing position (180° inclination) is ∼10–20% of that in the upward-facing position (0° inclination), compared to ∼53.3% on porous graphite. The CHF values of FC-72 liquid on porous graphite, which also decreased with increased inclination angle, are correlated using the general form suggested by Kutatelatze (1961) to within ± 5% of the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call