Abstract
This paper describes the effect of the inclination of the weld faying surface on joint strength of friction welded joint and its allowable limit for austenitic stainless steel (SUS304) solid bar similar diameter combination. In this case, the specimen was prepared with the inclination of the weld faying surface pursuant to the JIS Z 3607, and the joint was made with that diameter of 12 mm, a friction speed of 27.5 s−1, and a friction pressure of 30 MPa. The initial peak torque decreased with increasing inclination of the weld faying surface, and then the elapsed time for the initial peak increased with increasing that inclination. However, the steady torque was kept constant in spite of the inclination of the weld faying surface increasing. The joints without the inclination of the weld faying surface, which were made with friction times of 1.5 and 2.0 s with a forge pressure of 270 MPa, had achieved 100% joint efficiency with the base metal fracture. Those joints had 90° bend ductility with no crack at the weld interface. The joints with the inclination of the weld faying surface of 0.3 mm (gap length of 0.6 mm), which were allowable distance, was also obtained the same result with this condition. Furthermore, those joints with a friction time of 2.5 s obtained the same result. On the other hand, the joints with the inclination of the weld faying surface of 0.6 mm (gap length of 1.2 mm), which were twice inclination of the allowable distance, also obtained the same result in a friction time of 2.5 s. However, the joints without the inclination of the weld faying surface at this friction time did not obtain the base metal fracture, although those achieved 100% joint efficiency. In conclusion, to obtain 100% joint efficiency and the base metal fracture with no cracking at the weld interface, the joint must be made with the inclination of the weld faying surface, with allowable distance pursuant to the JIS Z 3607.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.