Abstract

Adipose-derived stromal cells (ADSCs) are promising stem cell sources for tissue engineering and cell-based therapy. However, long-term in vitro expansion of ADSCs impedes stemness maintenance, which is partly attributed to deprivation of their original microenvironment. Incompetent cells limit the therapeutic effects of ADSC-based clinical strategies. Therefore, reconstructing a more physiologically and physically relevant niche is an ideal strategy to address this issue and therefore facilitates the extensive application of ADSCs. Here, we transplanted separated ADSCs into local subcutaneous adipose tissues of nude mice as an in vivo cell culture model. We found that transplanted ADSCs maintained their primitive morphology and showed improved proliferation and delayed senescence compared to those of cells cultured in an incubator. Significantly increased expression of stemness-related markers and multilineage differentiation abilities were further observed in in vivo cultured ADSCs. Finally, sequencing revealed that genes whose expression differed between ADSCs obtained under in vivo and in vitro conditions were mainly located in the extracellular matrix and extracellular space and that these genes participate in regulating transcription and protein synthesis. Moreover, we found that an Egr1 signaling pathway might exert a crucial impact on controlling stemness properties. Our findings might collectively pave the way for ADSC-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.