Abstract

This study aims to advance the application of magnesia-zirconia (MgO–ZrO2) refractories in non-ferrous metal smelting furnaces by enhancing their thermal shock resistance. To fabricate MgO–ZrO2–MgAl2O4 refractories, tabular corundum particles and activated α-Al2O3 powder are integrated into MgO–ZrO2 refractories. The analysis of thermal shock resistance, phase composition, and microstructure of the samples was conducted to gain insights into the toughening mechanisms. The results reveal a substantial enhancement in thermal shock resistance with the addition of 15 wt% tabular corundum (1–0.5 mm) and activated α-Al2O3. Compared to samples without these additives, a notable increase of over 50.0 % in the ratio of residual cold modulus of rupture is shown. The enhancement in thermal shock resistance is primarily attributed to the in-situ generated MgAl2O4 spinel. This process involves volume expansion and increased thermal expansion mismatch, which induce microcrack toughening. Additionally, larger tabular corundum particles form in-situ MgAl2O4 spinel, causing crack deflection and branching, thus extending the crack propagation pathway. Furthermore, the presence of micropores in the spinel zone absorbs the energy required for crack propagation, thereby improving toughness and thermal shock resistance. Consequently, the MgO–ZrO2–MgAl2O4 refractories containing in-situ MgAl2O4 spinel with micropores are promising candidate for chrome-free refractories used in non-ferrous metal smelting furnaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.