Abstract

Electrochemical performance of MoS2/graphene materials in Li-ion batteries is strongly dependent on the structure of individual components and their coupling in the hybrid. We present a comparative study of the materials produced by annealing of amorphous MoS3 deposited on the surface of multilayer graphene flakes at 500 °C, 800 °C, and 1000 °C in vacuum. X-ray photoelectron spectroscopy confirmed a transformation of MoS3 to MoS2 at these conditions. High-resolution transmission electron microscopy and Raman scattering showed a growth of in-plane size of MoS2 nanocrystals with a raise of annealing temperature. Electrochemical tests detected a gradual decrease of the specific capacity of the MoS2/graphene materials prepared at 500 and 800 °C and a stable performance for the material synthesized at 1000 °C even at high current densities. Based on the initial discharge-charge profiles, we associate this effect with in-plane size of MoS2 nanocrystals, which should decompose more easily when the size is small, due to the interaction of lithium with edge sulfur atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.