Abstract

The effect of impurity reduction on the hot rolling behavior of AZ31 magnesium alloy was systematically investigated in this study. In the as-cast alloys, the total content of main impurity elements such as Fe, Si, Cu, and Ni was varied from 0.0462 to 0.0163 wt% by changing the purity of used raw magnesium metals. The alloys after homogenization were subjected to hot rolling at 300 °C with a reduction of 20% per pass. It was found that the initiation of edge cracks is postponed with reducing impurity level in the alloys. And the maximum rolling reduction prior to edge cracking increases from 34 to 58% as the impurity content drops from 0.0462 to 0.0163 wt%. Microstructural observations showed that smaller grains are present in the alloy with lower impurity content in the cast and homogenization states. Moreover, decreasing impurity content leads to a reduced number of deformation twins and an enhanced volume fraction of small recrystallized grains in the as-rolled microstructure, which indicates that impurity reduction is beneficial to the recrystallization process and subsequent plastic deformation. Based on the results, the enhancement in hot rollability of the AZ31 sheet by impurity reduction should be due to finer grain size, the reduced number of deformation twins and the enhanced extent of recrystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.