Abstract

Effects of impurities, such as carbon, nitrogen, helium and hydrogen, on microstructural evolution in pure iron were investigated by means of a multi-beam electron microscope. Growth rate of dislocation loops were measured to calculate vacancy migration energies. In all irradiation temperature conditions, both the size and the number density of dislocation loops were increased as a function of dose. Irradiation with more impurities showed an increase in the temperature dependence of the dislocation loop growth rate compared to irradiation with little impurities. The in situ experiment indicated that the net migration energy of vacancies could be increased due to trapping by impurities, and the effect of C and N on the migration energy of vacancy would be larger than that of W, V, Ta. Furthermore, H and He would increase vacancy migration energy greater than C and N, as well as W, V, Ta. The density functional theory (DFT), applied to the atomic models of BCC iron, indicated an increase in vacancy migration energy by the trapping of impurity atoms, that is a good agreement with this in situ experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call