Abstract
The surface composition and morphology of Fe(111) have been examined through a combined analysis that includes low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). The preferential segregation of sulfur has been clearly identified by AES upon annealing. The STM images exhibit numerous triangular pits of various sizes, and the LEED patterns show diffused n × 1 spots. The triangular pits reveal a Sierpinski gasket fractal. For sulfur-free Fe(111), nitrogen segregates to the surface upon annealing, forming a 4√3 × 4√3 superstructure that is identified by LEED patterns and STM images. The STM images show nanoscale triangular clusters regularly aligned in a hexagonal 4√3 × 4√3 configuration. Ultra-thin chromium film deposited on a nitrogen-segregated Fe(111) surface with post-annealing induces further nitrogen segregation, resulting in the formation of triangular pyramid-shaped CrN nanoclusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.