Abstract
Silicon nitride (Si3N4) whiskers were synthesized via a carbothermal reduction and nitridation process from silica-containing natural substances, such as volcanic ash, diatomaceous earth, white sand, and rice hull, using the flux effect of cryolite. It was clarified that the volcanic ash, whose Fe2O3 content contributed to the formation ratio of the α-type, was suitable as a raw material for the synthesis of Si3N4 whiskers. Fe2O3, Al2O3, and TiO2 contributed to the growth in the whisker-axis direction by the formation of droplets inducing the vapor-liquid-solid mechanism. CaO and MgO led to an increase in the diameter of the whiskers by vapor-solid and vapor-liquid-solid mechanisms, and the Fe2O3 content was the highest in the volcanic ash, whose Fe2O3 content was the highest among the natural substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.