Abstract
Evaluating risk of aircraft failure is necessary for scheduling appropriate maintenance, avoiding aircraft losses and mission failures, maintaining a high level of readiness, and estimating aircraft fleet aging. This paper presents the results of calculating aircraft failure risk by estimating the probability of structural failure of F-18 wing attachment bulkheads. Laboratory fatigue-crack growth-test data (published in open literature) are utilized to describe the distribution of initial defects, which is then evolved as a function of applied loads and flight hours. The risk is calculated as a probability of failure (POF) during a single flight, and it is shown that the effect of uncertainty in the knowledge of applied flight loads on POF is significant. The reported results provide a framework for evaluating benefits of improving accuracy of load-monitoring data and POF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.