Abstract

Decay kinetics of photoluminescence (PL) existing around 2.7 eV has been studied in various ion-implanted thermal SiO2 films as a function of implantation conditions. The PL observed in many samples shows decay constants shorter than 10 ms, which is a well-observed decay constant for silica glass. The change in the decay constant and that in the PL intensity have been found to be systematically related with the mass and the dose of the implanted ions. Therefore, despite the short decay constant, the present 2.7 eV PL is attributable to a triplet-to-singlet transition of oxygen deficient centers, as in the case of silica glass. The rapid decay is interpreted as the increase in spin-orbit coupling interaction due to structural deformations by ion implantation such as the formation of paramagnetic defects and/or densification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.