Abstract

This paper presents extensive acoustic measurements on jets impinging on surfaces of various surface roughness values. Besides surface roughness, the effects of nozzle-to-plate spacing distance and nozzle pressure ratio are also investigated. Turbulent mixing noise and tonal noise are explained using far-field wall-jet velocity and impingement region temperature fields. The results demonstrate that roughness of the impingement plate widens the staging region of impingement noise. In general, high speed jet impinging on a rough plate generates less noise compared to a smooth plate. When tones are removed from the spectra, it is found that acoustic power monotonically decreases with increasing surface roughness. Thermal imaging in the stagnation region indicates that whenever tones are present, the temperature at the stagnation region is high. Further, sound pressure directivity pattern of impingement noise is constructed by superimposing a wall-jet and a free jet in the appropriate orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call