Abstract

An anti-Brucella vaccine candidate comprised of purified Brucella lipopolysaccharide (LPS) and a cocktail of four Salmonella Typhimurium (ST)-Brucella vectors was reported previously. Each vector constitutively expressed highly conserved Brucella antigens (rB), viz., lumazine synthase (BLS), proline racemase subunit A, outer membrane protein-19 (Omp19), and Cu-Zn superoxide dismutase (SOD). The present study determined a relative level of protection conferred by each single strain. Upon virulent challenge, the challenge strain was recovered most abundantly in non-immunized control mice, with the ST-Omp19-, ST-BLS-, LPS-, and ST-SOD-immunized mice showing much less burden. Indirect enzyme-linked immunosorbent assay-based assay also confirmed the induction of antigen-specific immunoglobulin G for each antigen delivered. In a route-wise comparison of the combined vaccine candidate, intraperitoneal (IP), intramuscular (IM), and subcutaneous immunizations revealed an indication of highly efficient routes of protection. Splenocytes of mice immunized via IM and IP routes showed significant relative expression of IL-17 upon antigenic pulsing. Taken together, each of the Brucella antigens delivered by ST successfully induced an antigen-specific immune response, and it was also evident that an individual antigen strain can confer a considerable degree of protection. More effective protection was observed when the candidate was inoculated via IP and IM routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.