Abstract

Efficient and prolonged foreign gene expression has been demonstrated in the bilateral anterior horn motor neurons of the spinal cord by intramuscular inoculation with attenuated herpes simplex virus (HSV) expressing latency associated transcript promoter-driven beta-galactosidase (betaH1). To examine the effect of immunity on the gene delivery, betaH1 was applied in rats immunized subcutaneously or intramuscularly with the parent HF strain. Rats were immunized subcutaneously with HF strain and 28 days later when the high antibody titer was maintained, betaH1 was inoculated into the right gastrocnemius muscle. Second, 35 days after inoculation with HF strain into the right gastrocnemius muscle, betaH1 was inoculated at the same site. In both ways of immunization, immunity did not abolish or prevent the transgene expression in the anterior horn motor neurons, but attenuated the range and the number of the beta-galactosidase-positive neurons from about 85% to 50-65% on 28 days after inoculation with betaH1. However, beta-galactosidase activity was observed in a wide range of the bilateral anterior horn motor neurons without significant pathological changes. These findings support the feasibility of the attenuated HSV vector in gene delivery into the central nervous system, even in the presence of immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.