Abstract

The corrosion resistance of low-alloy steel containing 0.35 wt% copper, as a function of immersion time in a modified green death solution, was investigated using electrochemical methods and surface analysis. After 30 min of immersion, the steel surface was covered with a Cu-enriched film. Improvement of the film properties and increases in the corrosion resistance were realized for the immersion time up to 6 h due to the development of the Cu-enriched layer. However, the Cu particle was formed in the Cu-enriched layer for the immersion time beyond 6 h. Since the formation of the Cu particle generated a Cu-depletion region, micro-galvanic corrosion between the Cu particle and the Cu-depletion region lead to the localized film breakdown on the surface film. The localized film breakdown, which decreased the corrosion properties of the Cu-containing steel, was accelerated by the continuous formation of Cu particles in the rust layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.