Abstract

AbstractAbstract 5013Immunomodulatory drugs represent a major therapeutic advance in the treatment of patients with multiple myeloma. While these agents appear to exert various effects on the microenvironment, including effect on immune cells and angiogenesis, a direct effect on the tumor cells themselves is also likely. To describe and compare the effect of the three clinically available agents (thalidomide, lenalidomide, pomalidomide) we analyzed the gene expression profiles of fresh human myeloma cells exposed to thalidomide, lenalidomide or pomalidomide, using high density DNA arrays. Fresh human myeloma samples were obtained from bone marrow aspirates of patients with myeloma, and myeloma cells were immunopurified using anti CD138 magnetic beads. Purified myeloma cells (1.106 cells/ml) were incubated for 24 hours in RPMI 1640 medium supplemented with 10% fetal calf serum under each of the four following conditions: 1) DMSO; 2) thalidomide 40 microM; 3) lenalidomide 1 microM; 4) pomalidomide 100 nM. These levels are achievable in the plasma of MM pts. Pangenomic array experiments were performed usingWhole Human Genome 4 × 44K Agilent one-color microarrays. Data were normalized using the quantile normalization method. Samples were analysed for differentially expressed genes, taking into account both the level of significance and the fold-change. Ten evaluable samples were processed. Exposure to thalidomide, lenalidomide and pomalidomide induced differential expression of 36, 50 and 75 genes, respectively, in comparison to DMSO-exposed controls, the total list including 101 genes. Twelve of these were found to be differentially expressed after exposure to all of the three agents, including trophoblast glycoprotein, WAS protein family member 1, dickkopf homolog 1, pentraxin-related gene, CD28, interleukin 12B, tissue factor pathway inhibitor 2, phospholipase A2, dehydrogenase/reductase (SDR family) member 9, hypothetical LOC145788 and betacellulin. These commonly altered genes could be mechanistically involved in themultiple activities of these agents in multiple myeloma or may represent epiphenoma mechanistically unrelated to drug-induced cell death. Genes differentially expressed between the treatment with each of these agents could be indicative of the different and non-overlapping actions these agents have in multiple myeloma. An example of this is the recent demonstration that pomalidomide is clinically active in lenalidomide refractory patients. These results suggest that exposure to IMIDs induce various intracellular signalization pathways in myeloma cells which might be involved in the cytotoxic activity of these compounds. Disclosures:Dumontet:Celgene: Research Funding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.