Abstract

Tuning the characteristics of solvents to fit industrial requirements has currently become a major interest in both academic and industrial communities, notably in the field of room temperature ionic liquids (RTILs), which are considered one of the most promising green alternatives to molecular organic solvents. In this work, several sets of imidazolium-based ionic liquids were synthesized, and their toxicities were assessed towards four human pathogens bacteria to investigate how tunability can affect this characteristic. Additionally, the toxicity of particular RTILs bearing an amino acid anion was introduced in this work. EC50 values (50% effective concentration) were established, and significant variations were observed; although all studied ILs displayed an imidazolium moiety, the toxicity values were found to vary between 0.05mM for the most toxic to 85.57mM for the least toxic. Linear quantitative structure activity relationship models were then developed using the charge density distribution (σ-profiles) as molecular descriptors, which can yield accuracies as high as 95%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.