Abstract

The freezing–melting hysteresis in a given volume of hemolymph from the cerambycid beetle Rhagium inquisitor was linearly and negatively related to the logarithm of the mass fraction of ice in the sample. When the ice fraction dropped by a factor of 10, the hysteresis activity increased by about 2 °C. When the hemolymph was diluted, the hysteresis activity was linearly and negatively related to the logarithm of the dilution factor. Dilution of the hemolymph by a factor of 2 led to a 1 °C reduction in hysteresis activity. In the diluted samples, the ice growth took place along the a-axes, implying that the antifreeze peptides of insects block ice growth along the c-axis, in addition to the a-axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.