Abstract

Abstract Paper cultural relics, as the carriers of human civilization, inevitably deteriorate during the long-term storage. The restoration of those damaged or aged paper cultural relics is an important part of cultural relics protection. How to obtain the fiber with high permanence property is the key to the repair paper used to cultural relic restoration. Herein, in order to obtain high permanence lignocellulosic fiber, nano-CaCO3 was introduced inside the Wikstroemia bast fiber by in-situ mineralization. Under accelerated aging condition, the microstructure, chemical structure, crystallinity, degree of polymerization, variation of pH, alkali reserve and mechanical strength of the fiber before and after mineralization were studied. The results showed that nano-CaCO3 had no obvious effect on the properties of paper prepared from those mineralized fibers, but it can effectively neutralize the acid generated inside the fiber, slow down the degradation rate of cellulose and improve the permanence of the paper during the aging process. It provides a new insight for the manufacture of repair paper for cultural relics restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call