Abstract
To explore the effect of hypoxia-supported umbilical cord mesenchymal stem cell (UC-MSC) on the expansion of cord blood mononuclear cell (MNC) in vitro. The isolated cord blood mononuclear cells were inoculated on the preestablished umbilical cord mesenchymal stem cell layer and cultured under hypoxic conditions (3% O2) and the experimental groups were normoxia (MNCs were cultured under normoxic conditions), hypoxia (MNCs were cultured under hypoxic conditions), UC-MSC (MNCs were cultured with UC-MSC under normoxic conditions), and UC-MSC+hypoxia (MNCs were cultured with UC-MSC under hypoxic conditions). To further investigate the combinational effect of 3 factors of SCF+FL+TPO (SFT) on expansion of cord blood MNCs in vitro in hypoxia-supported UC-MSC culture system, the experiments were further divided into group A (MNCs were cultured with UC-MSC and SFT under normoxic conditions), group B (MNCs were cultured with UC-MSC under hypoxic conditions), group C (MNCs were cultured with UC-MSC and SFT under hypoxic conditions). The number of nucleated cells (TNC), CD34+ cell, CFU and CD34+CXCR4+, CD34+CD49d+, CD34+CD62L+ cells of each groups were detected at 0, 7, 10 and 14 days, respectively. Compared with group hypoxia and UC-MSC, group UC-MSC+hypoxia effectively promoted the expansion of TNC, CD34+ cell and CFU, and upregulated the expression level of adhesion molecule and CxCR4 of the cord blood CD34+ cell(P<0.05). After culturing for 14 days, compared with group A and group B, group C effectively promoted the expansion of cord blood MNC at different time points(P<0.05), and the effect of group A was better than that of group B at 7 and 10 days(P<0.05). Hypoxia-supported UC-MSC efficiently promoted the expansion and expression of adhesion molecule and CXCR4 of cord blood CD34+ cell, and the effect of expansion could be enhanced when SFT 3 factors were added.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.