Abstract

In this study we conducted a series of experiments to characterize the effect and define the mechanisms of hypoxia on synaptic transmission between retinal ganglion cells and superior colliculus (SC) neurons. Application of hypoxic solution leads to a long lasting potentiation (LTP) NMDA-mediated synaptic transmission. Analysis of the oxygen deficiency effect on the spontaneous and miniature postsynaptic currents (sPSC and mPSC respectively) revealed an increase in the frequency of their occurrence and the appearance of the second peak in the mPSC histogram distribution. The assessment of quantum and binomial parameters reflects the complex pre- and postsynaptic changes during the potentiation, independent of the release probability. Most likely this LTP can be caused by an increase in the total number of active synapses. Glutamatergic synaptic transmission mediated by non-NMDA activation receptor-channel complexes, responded to application of deoxygenated solution by the brief depression, which is the result of presynaptic dysfunction and associates with decrease in release probability and number of active zones. GABAergic synaptic transmission mediated by activation GABA(A)-receptor-channel complexes, responded to hypoxic action by long term depression (LTD). Analysis of sPSC and mPSC showed a significant decrease in the frequency of their occurrence and significant (P = 0.05) decrease in the quantum over a period of oxygen deficiency. In general, the effect of hypoxia-induced LTD of GABAergic synaptic transmission is based on complex changes of presynaptic (independent on the release probability) and postsynaptic (reduction sensitivity of receptors in postsynaptic membrane) mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.