Abstract

Nitric oxide (NO) has been shown to be a mediator of hypoxic injury in rat renal proximal tubules (PT). However, the role of NO in hypoxic injury to mouse. PT has not been examined. The aim of the present study was to determine the effect of knockout of nitric oxide synthase (NOS) isoforms on hypoxic injury in mouse PT. Mouse PTs were isolated by collagenase digestion and Percoll centrifugation. The nonselective NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 10 mM), but not its inactive stereoisomer D-NAME, protected against hypoxic injury as assessed by LDH release. Carboxy-imidazolineoxyl N-oxide (carboxy-PTIO, 100 microM), a stable NO scavenger, also afforded cytoprotection against hypoxic injury. To determine the role of the different NOS isoforms in the hypoxic injury, we examined the effect of hypoxia on PT isolated from knockout mice in which either the inducible NOS (iNOS) endothelial NOS (eNOS) or neuronal NOS (nNOS) gene was lacking. PT isolated from iNOS knockout mice were resistant to hypoxic injury compared to wild-type controls. In contrast, PT isolated from both nNOS and eNOS knockout mice were not protected against hypoxic injury. In conclusion, the present study demonstrates that NO is a mediator of hypoxic PT injury in the mouse and that knockout of the iNOS gene is cytoprotective against this hypoxic PT injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.